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Abstract. Online content providers process massive streams of texts to supply
topics and entities of interest to their customers. In this process, they face several
information overload problems. Apart from identifying topically relevant arti-
cles, this includes identifying duplicates as well as filtering summary articles that
comprise of disparate topical sections. Such summary articles would be treated as
noise from a media monitoring perspective, an end user might however be inter-
ested in just those articles. In this paper, we introduce the recognition of summary
articles as a novel task and present theoretical and experimental work towards
addressing the problem. Rather than treating this as a single-step binary classifi-
cation task, we propose a framework to tackle it as a two-step approach of bound-
ary detection followed by classification. Boundary detection is achieved with a
bi-directional LSTM sequence learner. Structural features are then extracted us-
ing the boundaries and clusters devised with the output of this LSTM. A range
of classifiers are applied for ensuing summary recognition including a convolu-
tional neural network (CNN) where we treat articles as 1-dimensional structural
‘images’. A corpus of natural summary articles is collected for evaluation using
the Signal 1M news dataset. To assess the generalisation properties of our frame-
work, we also investigate its performance on synthetic summaries. We show that
our structural features sustain their performance on generalisation in comparison
to baseline bag-of-words and word2vec classifiers.

1 Introduction

As the news domain becomes increasingly digitalised, individuals and companies are
now ever more reliant on monitoring tools to filter streams of online news articles.
In particular, individuals seek to find news relevant to their interests, while compa-
nies proactively monitor online content to manage their own brand image, and position
themselves to react quickly to changes in the industry and market [1].

Figure 1 depicts a typical processing pipeline for such monitoring tools. The key
steps of this pipeline are the topic classification of articles, and the identification of
relevant entities within each article. This pipeline must cope with massive streams of
documents from various online sources, which can be noisy. Hence, the pre-processing
step plays an important role in removing undesirable content (noise) that may affect the
output of the latter steps.

One distinct example of such noise is what we define as ‘summary’ articles. Our
definition is as follows: a summary article aggregates several otherwise disparate top-
ical sections. If one writes a summary of another topical article (an article discussing
one topic), the resulting article is still clearly topical. By contrast, in our definition, a



Fig. 1. A typical media monitoring pipeline.

summary article encompasses a collection of topics that do not bear any manifest re-
lation. Such articles are often created by web aggregators3, but are also published by
other more traditional news sources, for example when reporting on today’s current af-
fairs. An example of a summary article is provided in Figure 2 (right). If these articles
are passed over to the topical classifier of the pipeline in Figure 1, they might become
classified under any of their constituent topics, rather than being discarded. Therefore,
it is important to automatically identify these articles within a media monitoring con-
text. In this paper, we introduce the new task of ‘summary article recognition’, which
involves the binary classification of news articles into summaries or not (i.e. topical).

One may assume that summary articles will be presented in a characteristic form
making them easy to recognise. Taking the two examples in Figure 2, the first (left)
article is topical, because each paragraph discusses some aspect of one topic “Poland’s
financial markets”. The article on the right consists of paragraphs which do not share
any connective topic, and the article is hence a summary. In terms of their visual form,
however, the two articles cannot be distinguished. Therefore, it is the underlying flow
of topics and the entities, ‘the linear structure’ of an article, that is the principal deter-
minant of its class, irrespective of its apparent visual form. Although the first article in
Figure 2 also comprises of linearly segmented topics, these topics are each connected
under the article’s principal theme, thus rendering it topical.

Fig. 2. Examples of topical (left) and summary (right) articles.

There exists a range of established tools that can help in modelling the article’s
content in terms of topics and entities. These include generative methods with topic
modelling as proposed by [2, 3], as well as entity-based approaches, the most effec-
3 examples are https://news360.com and
https://www.bloomberg.com/series/top-headlines



tive of which leverage a knowledge graph [4]. Although powerful, these methods have
certain limitations. They either rely on corpus specific parameterisation that impairs
generalisation, or require elaborate processing that limits extension to large datasets or
document streams.

To this end, in this paper, we propose a framework for summary recognition that
does not suffer from the aforementioned limitations. Our framework consists of two
steps: structure extraction followed by classification. For structure extraction, we em-
ploy boundary detection to characterise the ‘linear structure’ of an article. In particular,
boundary detection quantifies whether there is a topic shift at the end of every sentence 4

in the article. The output of boundary detection is then used to devise ‘structural’ fea-
tures used for the classification step in a supervised manner. To illustrate the intuition
behind our framework, in Figure 3 we visualise the output of boundary detection for
each sentence in both topical and summary articles. One can visually discriminate be-
tween summary and topical articles, as summary articles exhibit blunt topic shifts in
the text. It is therefore reasonable to rely solely on structural features devised from the
boundary detection step to classify summary articles.

For boundary detection, we use neural networks and word embeddings for a su-
pervised strategy. Building on the work of Koshorek et al. [5], we perform boundary
detection with a pre-trained LSTM (Long Short-Term Memory) neural network. Un-
like [5] who train on Wikipedia content headers for detection of ‘narrative’ boundaries,
the distinctive aspect of our approach is a synthetic training set of 1 Million summary
articles which we tailor to detect ‘topical’ boundaries.

As summary recognition has not, as far as we are aware, been previously attempted,
we trial a variety of structural features. This enables us to comparatively assess their
generalisation performance and identify potential candidates for future research. Our
proposed features are as follows: (i) boundary features directly derived from the output
of the boundary detector (example in Figure 3), (ii) cluster features derived by applying
a linear clustering step on top of the boundary detection output. Finally, for the clas-
sification component of our framework, we evaluate a number of binary classification
models, but foremost we propose boundaries be treated as ‘structural images’; this en-
ables us to capture the overall aggregate structure of an article regardless of its length,
and to leverage the power of a convolutional neural network (CNN).

Fig. 3. Each column represents an article and rows the output of boundary detection applied
subsequently on each sentence. Darker colours represents higher probability of boundaries.

4 Paragraph delimiters are not consistently available, especially in the realm of digital web con-
tent. For robustness we thus perform all boundary detection at the sentence level.



To evaluate our framework, we build a natural dataset of summary and topical arti-
cles by annotating a sample of the Signal 1M news dataset [6]. To further gauge general-
isation performance, we also construct an additional composite training set comprising
of synthetic summaries. Our contributions can be summarised as follows:

– We introduce the new task of summary recognition and devise a dataset to foster
further research on this task. This dataset is built on top of the public Signal 1M
dataset and we make it publicly available 5.

– Using this dataset, we evaluate our framework with a number of structural features
for summary recognition. The results show that it sustains its performance on gen-
eralisation in comparison to baseline bag-of-words and word2vec classifiers.

The remainder of the paper is structured as follows. We give a brief review of re-
lated work that underpins our functional components (Section 2), before presenting
our framework thoroughly (Section 3). In Section 4, we present the three datasets we
employ for experimentation. These experiments and their results are then detailed in
Sections 5 and 6, followed by our conclusions (Section 7).

2 Related Work

Although our goal is recognising summary articles, the principal facet of our framework
is boundary detection. Boundary detection is most prominently employed in the field
of text segmentation; also known equivalently as ‘linear clustering’. This involves the
detection of boundaries within a text that together form an optimally cohesive sequence
of contiguous segments.

2.1 Text Segmentation

Text segmentation is inherently an unsupervised problem as there are rarely true objec-
tive boundaries. Hence, supervised methods are usually domain specific relying on sup-
plementary sources to mark out these boundaries. One area where such ‘multi-source’
approaches have proven effective is the transcript and newswire domains [7, 8], where
content breaks are more explicit, aligned with natural prosodic features such as pauses,
speaker change and cue phrases.

Unusually, Koshorek et al. [5] overcome this by leveraging Wikipedia headers to
label sentence boundaries in Wikipedia articles, producing a somewhat ‘narrative’ seg-
mentation. We take a similar approach, but instead synthesise our training data to pro-
duce a more blunt ‘topical’ segmentation suited to our summary recognition task.

Aside from these few supervised methods, the bulk of segmentation research is
in the unsupervised field where a wide variety of algorithms [9–11] have arisen. This
includes statistical and hierarchical methods that involve dynamic programming [12]
and more elaborate probabilistic modelling [13] to infer optimal clustering of a text.
These generative methods all require parameterisation, for example in Misra et al.’s
LDA method [3] the number of topics and Dirichlet priors must first be specified for the
sample corpus. In this paper, we propose a framework that is generic and extensible, so
that our model can be deployed dynamically to new document streams.
5 https://research.signal-ai.com/datasets/signal1m-summaries.html



2.2 Neural Methods

The rise of neural networks has provided new mechanisms for representing words and
sentences, which as demonstrated by [5] can also be employed for our boundary de-
tection component. Although we opt to employ pre-trained word2vec embeddings, as
first introduced by [14], more elaborate pre-trained embeddings are also available. This
includes CPHRASE [15], which use syntactic relations to selectively determine which
context words are used for training. Garten et al. [16] also show that combining mul-
tiple embeddings, via aggregation or maxima, further improves performance. There is
thus plenty of scope for trialling different trained embeddings.

Sentence embeddings can also be trained using similar methods. Implementations
such as FastSent [17] and Skip Thought [18] have adopted equivalent (Continuous Bag
of Words) CBOW and Skip Gram training mechanisms, but employing contextual sen-
tences rather than words. More recently, Sent2Vec [19] augmented the CBOW approach
by including n-grams within the context window. Hill et al. [17] observed that sim-
ple aggregation of word and n-gram embeddings such as neural bag-of-words can still
achieve equivalent performance to the aforementioned sentence embedding approaches
on unsupervised tasks.

As shown by [5], LSTM neural networks can also be used in an equivalent unsu-
pervised capacity to encode sentences. Here, aggregation is performed in alignment
with the LSTM’s bi-directional context window to capture a more sequential embed-
ding. These recurrent LSTMs, as first proposed by Hochreiter and Schmidhuber [20],
are well known for their performance in sequence learning such as machine translation
(MT). Sutskever et al. [21] outperformed a statistical MT system, despite their LSTM
being restricted to a more limited vocabulary. Moreover, Chenglin et al. [22] developed
an elaborate bi-directional LSTM architecture incorporating Viterbi decoding to model
prosodic and lexical features for sentence boundary detection in broadcast news. But
as far as we know from our research, Koshorek et al.’s [5] is the first attempt at text
segmentation using neural methods. We employ their model directly, but extract the
softmax boundary layer for input into our feature-based approaches.

3 Framework for Structural Summary Recognition

We propose a framework comprising two generic functional components: the structure
extractor, followed by a binary classifier (Figure 4). The structure extractor aims to
characterise the linear structure of the article. It outputs structural features which are
then used by a binary classifier for summary recognition. The output of the framework
is a binary label for the article: positive (summary) or negative (topical) 6.

Fig. 4. Framework for Structural Summary Recognition.

6 We refer to negative articles by our classification as ‘topical’, as the vast majority of non-sum-
mary articles are typically topical



For the structure extractor component of the framework, we propose to employ
a boundary detection approach as shown in Figure 5. The boundary detector produces
a probability for each sentence in the article, denoting the likelihood of a topic shift in
the following sentence. These probabilities are used to engineer structural features. In
our implementation of the framework, we propose two families of structural features;
sentence boundaries and word clusters (Figure 5).

For the binary classifier component of the framework, we trial a number of models
as suited to each class of structural features. As choice of classifier is intrinsically tied
to the features, we present these classifier components alongside the respective features
in Sections 3.2 and 3.3. Before this, we present our boundary detection approach in
Section 3.1.

Fig. 5. Our structure extractor model. We employ a boundary detector component to extract
boundary and cluster features. Sections 3.2 and 3.3 describe how these features are extracted.

3.1 Boundary Detector

For boundary detection, we employ the LSTM model proposed by Koshorek et al. [5].
This model has a dual architecture commencing with a first a sentence encoder followed
by a sequence labeller. The sentence encoder is an unsupervised LSTM network. It acts
as an aggregator, encoding the set of word embeddings within each sentence. Rather
than a flat aggregation of words, it aggregates the word sequences in the sentence, mak-
ing it well suited to the boundary detection objective. The encoded sentences are then
supplied to the sequence labeller, which is a supervised bi-directional LSTM trained to
label a sequence of sentences as boundaries or not. The final softmax output layer of
the network thus provides a boundary probability for each sentence in the article, that
are used in constructing the boundary features in Section 3.2.

It should be noted that there are other options to implement the boundary detector
component of our framework. This includes, for example, state-of-the-art unsupervised
models such as GraphSeg [23]. We leave this for future work.

3.2 Boundary Features

Here, we use the boundary probabilities directly to characterise an article’s linear struc-
ture. We extract these structural features in two forms.

In the first form, we apply the full sequence of boundary probabilities to feed a
CNN classifier. We refer to this set as an ‘image’, as it captures the complete sequential
structure of the article. Just as a CNN convolves over 2-dimensional visual images, here
it convolves over our 1-dimensional structural image. This would enable it to recognise
any intrinsic elements or artefacts that might typify the style of summary articles, whilst



maintaining invariance to the specific position of these elements. We start with the foun-
dation architecture optimised for image recognition by Lecun et al. [24], but make its
convolutional layers 1-dimensional. The number of filters and dense layers are also ad-
justed through general experimentation to maximise performance. Drop out layers in
particular were found to be benefical, as shown in Figure 6.

Fig. 6. Binary classification of summary articles using a CNN with image-based boundaries.

In the second form, we ‘average’ the boundary probabilities. Here, as an additional
feature, we also include the quantity of detected boundaries by applying a threshold to
the boundary probabilities as visualised in Figure 5. These two features provide a more
generic representation of the article, which we hypothesise may improve its scope in
summary classification. We trial the SVM model for binary classification of summary
articles using these features.

Fig. 7. Our two structural features. For cluster features we employ Silhouette [25] and Calinski
Harabaz scores [26]. Apart from the image features, all features additionally include the nor-
malised quantity of detected boundaries.

3.3 Clustering Features

Here, we aim to capture richer structural features of the articles. The hypothesis is that
summary articles will consist of distant clusters, while topical ones will have close and
cohesive clusters. We employ two forms of clustering; ‘linear’ and ‘natural’.

Linear clusters are formed by segmenting the text in compliance with the bound-
ary threshold as visualised in Figure 5. We also relax this linear constraint to perform
natural K-Means clustering of the article’s word embeddings. Here, to encourage a
clustering that may still correlate with the article’s potential topics, the quantity of de-
tected boundaries is used to seed the K-Means algorithm. Therefore, these clusters are
still indirectly dependent upon the boundary detection. While linear clusters are fully
supervised by the boundary detector, natural clusters are semi-supervised by virtue of
this dependency. Relaxing the linear constraint should allow K-Means to yield more
cohesive clusters, but it is unclear whether these will still sufficiently correlate with the
contiguous structure of the article, hence why we opt to trial both forms of clustering.

After clustering, we compute clustering metrics using Silhouette [25] and Calinski
Harabaz scores [26], which characterise the cohesion and distribution of the resulting
clusters. The clustering features comprise of both these metrics and the quantity of
clusters (normalised by number of sentences). These features are then used for binary
summary classification where, as before, we trial the SVM classifier.



4 Datasets

Three datasets are assembled for training and evaluation purposes. These are sampled
from two distinct data sources as shown in Table 1 which outlines the composition of
each dataset. We devise a natural dataset for evaluating summary classification perfor-
mance. We make this dataset available for public use. 7 We also construct a much larger
set of synthetic summaries for training of the LSTM boundary detector (described in
Section 3.1). Additional summaries are then synthesised, alongside a randomised se-
lection of topical articles to build a composite dataset to evaluate the generalisation
performance of our summary classifiers. Next, we describe our datasets in more detail.

Table 1. The sizes and the sources of our three datasets. †synthesised from the ‘Topical News
Articles’ source, as set out in Section 4.2 Boundary training Summary classification

Synthetic Natural Composite
Data Source Size 1,000,000 892 892
Signal 1M 1,000,000 892
Topical News Articles 31,000 446
†Aggregated (2-10 topics) 1,000,000 1,000,000 446

4.1 Natural Summaries Dataset

To evaluate summary article recognition, we collect summary articles using the Signal
1M news article dataset [6]. This dataset covers a typical stream of news articles pro-
cessed for media monitoring purposes. It includes 1 million articles during September
2015 from 93K sources ranging from web aggregators to premium publications.

To label articles from Signal 1M, we obtained a biased sample of 2900 articles. To
create this sample, we use a Lucene index and apply search terms such as ‘month’,
‘week’, ‘review’, ‘report’ and ‘roundup’, using vector-based tf-idf ranking to retrieve
the highest scoring articles. In conducting this search, certain sources were found to
produce a larger proportion of summary-style articles. As summaries are relatively un-
common, queries were also further tailored to promote articles of these sources. This
biased sample (rather than a random one) somewhat limits the variance of the resulting
dataset, but was necessary in order to obtain a sufficient quantity of summary articles.

From the biased sample (2900 articles), a subset of 400 articles was first labelled
by 4 independent annotators, in order to gauge labelling accuracy, yielding a pair-wise
agreement of 85%. This reflects the ambiguity inherent in the recognition of summary
articles, as demonstrated by the examples in Figure 2. Due to resource limitations, the
remaining 2500 articles were then labelled by one of our 4 annotators. Using the labels
of this annotator, the biased sample had 446 summary articles and 2454 topical articles.
To create a balanced natural dataset, we selected all the 446 summary articles and an
equal quantity of topical articles drawn randomly, providing a total of 892 articles.
Although surplus articles remain, balancing is very important for effective training of
our binary classifiers.
7 https://research.signal-ai.com/datasets/signal1m-summaries.html



4.2 Synthetic Summaries Dataset

Effective sequence training of an LSTM network requires a very large volume of la-
belled articles. As a large labelled dataset of summary articles is not readily available,
we opt to instead synthesise our boundary training set, using topical articles.

To construct this training set, we first obtained a private set of 31,000 topical news
articles, from similar sources of those covered by Signal 1M, but during a larger time
frame (September 2015 till July 2018). Each article is manually labelled by independent
commercial annotators with one of 50 different topical classes. To synthesise summary
articles from these topical articles, we follow the protocols employed by Choi on his
‘Choi dataset’ [10], which has become recognised as the reference baseline for segmen-
tation evaluation. In particular, these protocols are designed to mirror the variability of
natural articles. With this protocol, to synthesise a summary article consisting of sub-
sequent segments, a distinct topical article is selected (from the 31,000 topical articles)
for each segment, ensuring no topic repetition. Then, a random position within this topi-
cal article is selected to extract the requisite quantity of contiguous sentences. Applying
these protocols we synthesise 1 Million articles forming our synthetic summary dataset.

4.3 Composite Summaries Dataset

In order to assess the ‘generalisation’ capabilities of our framework, we assemble an
additional composite dataset of summary articles. This set is for training purposes only,
to evaluate its impact on natural summary classification.

We call this set ’composite’ as its summary portion is synthetic (synthesised using
the protocol described in Section 4.2), while its topical portion is natural (see Table 1).
The basis for its use in generalisation is 2-fold, upon both content and structure:

(i) Content: The entire dataset is sourced from a much wider variety of articles,
encompassing three years (Sept-2015 through July-2018), unlike our natural dataset
which is sampled from the more restrictive 1 month (Sept-2015) Signal 1M dataset.

(ii) Structure: Having been algorithmically synthesised, its summary samples are
each structurally much more uniform; They do not exhibit the same stochastic variation
as natural occurring summaries.

To aid direct evaluation against our natural corpus, we also make this composite set
the same size (892 articles), again balancing summary and topical. Topical articles are
drawn randomly from the 31,000 dataset to maximise its variance.

5 Experiments

Our experiments seek to evaluate the main objectives we set out in Section 1. In partic-
ular, our experiments aim to answer the following research questions:

RQ1: How does our framework compare to existing content-feature and semantic-
feature approaches, such as, bag-of-words or pairwise sentence similarity?

RQ2: Can our framework generalise effectively to new settings and content shift?
RQ3: Within our framework, which structural features are most effective for sum-

mary article recognition?
Next, we describe the baselines we use. Then, we detail our experimental setup and

implementation details.



5.1 Baselines

As far as we are aware, the task of summary article recognition has not yet been at-
tempted. Therefore, there is no obvious state-of-the-art baseline to compare our frame-
work. We therefore experimented with three supervised baselines, encompassing both
conventional and word embedding approaches. For all the baselines, we use standard
binary classification applied on different sets of features. As an initial content-based
baseline, we apply conventional bag-of-word features. We then leverage word embed-
dings for two further semantic baselines. First, we use the relatedness score [23] for
every adjacent pair of sentences to calculate the average pairwise sentence similar-
ity of each article. This exploits the same semantic relatedness properties as used to
train our LSTM, but in an unsupervised setting, so is more directly comparable to our
structural framework. Finally, we apply aggregated embeddings [27] where for each
article, a single aggregated vector is produced by averaging the word2vec embeddings
for each unique word in the article.

5.2 Experimental Setup

The experiments assess the performance of the baselines and our framework using all
the combination of our structural features and summary classifier described in Section 3
and summarised in Figure 7.

We ran two distinct experiments. In the first experiment, natural training, we use our
balanced natural dataset of 892 articles (Section 4.1). We employ 5-fold stratified cross
validation (CV), reporting average independent performance on each fold. In the second
experiment, composite training, we aim to evaluate the generalisation properties of our
models. Here, we train separately on our identical size composite dataset (see Section
4.3). The identical 5-fold CV strategy is applied but we test on the corresponding natural
dataset folds, as previously stratified, allowing direct comparison with natural training.

5.3 Implementation Details

Pre-Processing: As sentences are the base unit for boundary detection, pre-processing
is aimed at yielding a coherent and contiguous set of candidate sentences, each of ad-
equate length; Length is important to avoid data sparsity issues that might arise due to
a lack of matched word2vec embeddings. First, employing a SpaCy syntactic parser,
we clean all non-content words, numerics and punctuation. Thereafter, pre-processing
involved discarding small paragraphs2, which typically constitute headers (we opt for a
50-character limit on paragraph retention), then concatenating short sentences
Word Embeddigns: For all our approaches, features are built upon foundation word
embeddings. As we source our articles from the Signal 1M collection [6], there is no
particular relevant domain that would offer the potential to train tailored embeddings.
We therefore employ word2vec pre-trained Google News embeddings [14], which are
also well suited to the general news domain of our corpus. To maximise semantic inter-
pretation, we allow Google News to enforce its own limit on stop words.
Neural Networks: Our LSTM two-layer network for boundary detection was trained
using our synthetic datasets (See Section 4.2). It was trained in 40 hours using an Nvidia
Tesla GPU. When performing CV, the CNN network weights are re-initialised on each
fold to ensure a new model is fitted.



Feature Normalisation: As articles vary in size, structural features must also be nor-
malised to enable effective use in classification. For most of our approaches this is
achieved in straightforward fashion, normalising by the total quantity of clusters or
boundaries as respective to the class of feature. For our image features, we perform
normalisation using a bicubic image filter. Here, to best preserve the structural repre-
sentation of the article we opt for a target size of 40 boundaries, which approximates
the average size in our natural test dataset.

6 Results
The cross validation results for our framework (using boundaries and clustering fea-
tures) and the baselines in both experiments are reported in Table 2.

In the natural training experiment, our bag-of-words and aggregated embeddings
baselines show strongest classification performance in terms of both precision and recall
(and thus F1 accuracy), exceeding our best performing linear segmentation features
(0.8067 vs. 0.6834). This points to the degree of content consistency in the natural
dataset, likely contributed by some publishers we have selected in our biased sampling
of Signal 1M (see Section 4.1) having a consistent style.

In the composite training experiment, the performance of all of the baselines drop,
up by 12 percentage points for aggregated embeddings, from 0.8067 to 0.6801. In other
words, their performance is not resilient to content shift. By contrast, most variants
of our framework maintain a similar classification performance when tested on a dif-
ferent setting. They exhibit a marginal drop in F1 when comparing their performance
between natural training and composite training. With composite training, one variant
of our framework ‘linear segmentation/SVM’ is significantly better than both the bag-
of-words and pairwise sentence similarity baselines using McNemar Test (p < 0.01).

To summarise, as an answer to our research question RQ1, we can conclude that
conventional content-features approaches may be adequate for summary recognition,
and they outperform our framework. The aggregated embeddings in particular show
strongest performance. This is only true, however, when re-training a model is feasible,
and a budget is available to collect labelled data. For RQ2, we conclude our framework
has a strong generalisation performance. It has shows to be resilient to content shift (the
composite training). This suggests that it has the potential to sustain its performance if
deployed on dynamic content streams that continuously change.

Table 2. Average CV classification performance for summary articles. All test results encompass
the full 892 articles of our natural summaries dataset. For baselines, we report the best performing
classifier (with composite training) from logistic regression, Naı̈ve-Bayes (NB) and SVM. ◦ and †
denote statistically significant differences of classification decisions when compared to bag-of-
words and average pairwise sentence similarity respectively using McNemar Test (p < 0.01).

Natural Training Composite Training
Features Class. P R F1 P R F1

Boundaries image CNN 0.7382 0.6143 0.6703 0.6621 0.5492 0.6001
average probabilities SVM 0.6459 0.6728 0.6585 0.6107 0.6032 0.6416

Clusters linear segmentation SVM 0.6630 0.7062 0.6834 0.6581 0.7084 0.6820◦†
natural K-Means SVM 0.6628 0.6524 0.6573 0.7210 0.5828 0.6425

Baselines aggregated embeddings log. reg. 0.7647 0.8542 0.8067 0.6152 0.7622 0.6801
avg. pairwise sent. sim. SVM 0.5853 0.7534 0.6588 0.5839 0.7265 0.6469
bag-of-words NB 0.6429 0.9685 0.7728 0.5023 0.9955 0.6677



Next, we analyse the differences between our proposed combinations of struc-
tural features and binary classifiers within the framework. Table 2 shows that the ‘im-
age/CNN’ achieves the strongest performance on natural training. On generalisation,
however, this performance drops noticeably, unlike ‘average probabilities’ which sus-
tains its performance. This suggests that the CNN is better equipped to learn the distinc-
tive aspects of summaries in the training domain. From this viewpoint, the CNN’s per-
formance on natural training is perhaps still muted. We suggest this is due to the small
size of our dataset; with more training samples, performance of this neural method
can reasonably be expected to improve. The ‘average probabilities/SVM’ achieves a
lower F1 than ‘image/CNN’, but appear to more resilient; with more balance between
precision and recall. Also, it is more capable of sustaining performance on generalisa-
tion (dropping F1 only marginally 0.6585 to 0.6416), we thus suggest these averaging
boundary probabilities provides a better foundation for improvement.

Our clustering feature variants ‘linear segmentation/SVM’ and ‘natural K-Means/SVM’
show the strongest overall performance on ‘composite training’ within our framework.
In practical use, however, these clustering features may not be the optimal choice. As
a gauge, our trained LSTM generates boundary predictions at the rate of 4 articles per
second on an Nvidia Tesla GPU; thereafter, averaging these features is trivial. On the
other hand, clustering costs additional CPU time for cluster assembly.

In summary, and as an answer to RQ3, we conclude that the clustering features have
strong generalisation capabilities, and are more resilient to content changes than so-
phisticated CNN approaches trained on sequence of boundary probabilities. The caveat
however is their computational complexity.

7 Conclusion
We present the new task of ‘summary recognition’, that is relevant in a media monitor-
ing context in particular but is also applicable in many other scenarios. To address this
task, we propose a structural framework for summary article prediction aimed princi-
pally at achieving generalised performance, which is resilient to variations and shifts in
content. The salient component of the framework is a structure extractor that identifies
the linear (or semantic) structure of the article to aid summary classification. Building
on the work of boundary detection and text segmentation, we show that we can effec-
tively devise structural features that are robust for summary recognition. In particular,
we show that our structural features sustain their performance upon generalisation to
new content distributions, compared to established aggregated embeddings and bag-of-
words baselines that both markedly degrade in performance.

Central to our experiments in this paper, is the construction of new datasets (natu-
ral and synthetic) to evaluate the effectiveness of our framework and its generalisation
behaviour. The natural is made public to foster further research in this area.

As we are the first to experiment with summary recognition, an important aspect of
our work is to provide a foundation for further research. Based on performance of our
boundary structural features, for future work, we suggest methods for tailoring the word
embeddings to produce more purpose-specific boundaries that may enhance their per-
formance. As entities are a principal topical indicator, we suggest incorporating knowl-
edge graph concept vectors [28] or training embeddings on their entity usage contexts
only. Following the findings of Garten et al. [16], such approaches may also be com-
bined if beneficial to augment pre-trained generalised embeddings.
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